4,628 research outputs found

    A Unique "Nonnegative" Solution to an Underdetermined System: from Vectors to Matrices

    Full text link
    This paper investigates the uniqueness of a nonnegative vector solution and the uniqueness of a positive semidefinite matrix solution to underdetermined linear systems. A vector solution is the unique solution to an underdetermined linear system only if the measurement matrix has a row-span intersecting the positive orthant. Focusing on two types of binary measurement matrices, Bernoulli 0-1 matrices and adjacency matrices of general expander graphs, we show that, in both cases, the support size of a unique nonnegative solution can grow linearly, namely O(n), with the problem dimension n. We also provide closed-form characterizations of the ratio of this support size to the signal dimension. For the matrix case, we show that under a necessary and sufficient condition for the linear compressed observations operator, there will be a unique positive semidefinite matrix solution to the compressed linear observations. We further show that a randomly generated Gaussian linear compressed observations operator will satisfy this condition with overwhelmingly high probability

    Particle-resolved thermal lattice Boltzmann simulation using OpenACC on multi-GPUs

    Full text link
    We utilize the Open Accelerator (OpenACC) approach for graphics processing unit (GPU) accelerated particle-resolved thermal lattice Boltzmann (LB) simulation. We adopt the momentum-exchange method to calculate fluid-particle interactions to preserve the simplicity of the LB method. To address load imbalance issues, we extend the indirect addressing method to collect fluid-particle link information at each timestep and store indices of fluid-particle link in a fixed index array. We simulate the sedimentation of 4,800 hot particles in cold fluids with a domain size of 400024000^{2}, and the simulation achieves 1750 million lattice updates per second (MLUPS) on a single GPU. Furthermore, we implement a hybrid OpenACC and message passing interface (MPI) approach for multi-GPU accelerated simulation. This approach incorporates four optimization strategies, including building domain lists, utilizing request-answer communication, overlapping communications with computations, and executing computation tasks concurrently. By reducing data communication between GPUs, hiding communication latency through overlapping computation, and increasing the utilization of GPU resources, we achieve improved performance, reaching 10846 MLUPS using 8 GPUs. Our results demonstrate that the OpenACC-based GPU acceleration is promising for particle-resolved thermal lattice Boltzmann simulation.Comment: 45 pages, 18 figure

    Wall-sheared thermal convection: heat transfer enhancement and turbulence relaminarization

    Full text link
    We studied the flow organization and heat transfer properties in two-dimensional and three-dimensional Rayleigh-B\'enard cells that are imposed with different types of wall shear. The external wall shear is added with the motivation of manipulating flow mode to control heat transfer efficiency. We imposed three types of wall shear that may facilitate the single-roll, the horizontally stacked double-roll, and the vertically stacked double-roll flow modes, respectively. Direct numerical simulations are performed for fixed Rayleigh number Ra=108Ra = 10^{8} and fixed Prandtl number Pr=5.3Pr = 5.3, while the wall-shear Reynolds number (RewRe_{w}) is in the range 60≀Rew≀600060 \le Re_{w} \le 6000. Generally, we found enhanced heat transfer efficiency and global flow strength with the increase of RewRe_{w}. However, even with the same magnitude of global flow strength, the heat transfer efficiency varies significantly when the cells are under different types of wall shear. An interesting finding is that by increasing the wall-shear strength, the thermal turbulence is relaminarized, and more surprisingly, the heat transfer efficiency in the laminar state is higher than that in the turbulent state. We found that the enhanced heat transfer efficiency at the laminar regime is due to the formation of more stable and stronger convection channels. We propose that the origin of thermal turbulence laminarization is the reduced amount of thermal plumes. Because plumes are mainly responsible for turbulent kinetic energy production, when the detached plumes are swept away by the wall shear, the reduced number of plumes leads to weaker turbulent kinetic energy production. We also quantify the efficiency of facilitating heat transport via external shearing, and find that for larger RewRe_{w}, the enhanced heat transfer efficiency comes at a price of a larger expenditure of mechanical energy.Comment: 27 pages, 16 figure
    • …
    corecore